The oil and gas industry is one of the world’s largest
industries in terms of sheer dollar value.
This energy source is what keeps us warm in cold weather, makes it easy
to cook our food and heat our water, generates our electricity and fuels our
transportation needs. Given that the oil
and gas industry is so critical to our everyday lives, the role of IT is of is
of paramount importance.
Oil and gas is a very technology-oriented industry; many
techniques developed by the industry are now used in other industries,
including the space program. Technological innovations have made it possible
for the oil and gas industry to supply the fuels that power the world economy.
Oil and Natural Gas Under the Earth
Administration
Although there are several ways that methane, and thus oil
and natural gas, may be formed, it is usually found underneath the surface of
the earth. As oil and natural gas has a low density, once formed it will rise
toward the surface of the earth through loose, shale type rock and other
material. Some of this oil and gas will simply rise to the surface and seep on
the surface or dissipate into the air. However, a great deal of this oil and
gas will rise up into geological formations that 'trap' the gas under the
ground. These formations are made up of layers of porous, sedimentary rock
(kind of like a sponge that soaks up and contains the gas), with a denser,
impermeable layer of rock on top.
This impermeable rock traps the oil and natural gas under
the ground. If these formations are large enough, they can trap a great deal of
oil and natural gas underground, in what is known as a reservoir. There are a
number of different types of these formations, but the most common is created
when the impermeable sedimentary rock forms a 'dome' shape, like an umbrella
that catches all of the natural gas that is floating to the surface.
There are a number of ways that this sort of 'dome' may be
formed. For instance, faults are a common location for oil and natural gas deposits
to exist. A fault occurs when the normal sedimentary layers 'split' vertically,
so that impermeable rock shifts down to trap natural gas in the more permeable
limestone or sandstone layers. Essentially, the geological formation, which
layers impermeable rock over more porous, oil and gas rich sediment, has the
potential to form a reservoir. The picture alongside shows how natural gas and
oil can be trapped under impermeable sedimentary rock, in what is known as an
anticlinal formation. To successfully bring these fossil fuels to the surface,
a hole must be drilled through the impermeable rock to release the fossil fuels
under pressure. Note that in reservoirs that contain oil and gas, the gas,
being the least dense, is found closest to the surface, with the oil beneath
it, typically followed by a certain amount of water. With natural gas trapped
under the earth in this fashion, it can be recovered by drilling a hole through
the impermeable rock. Gas in these reservoirs is typically under pressure, allowing
it to escape from the reservoir on its own.
Source: Energy Tomorrow
In addition to being found in a traditional reservoir such
as the one shown above, oil and natural gas may also be found in other
'unconventional' formations.
Exploration
The practice of locating petroleum deposits has been
transformed dramatically in the last 20 years with the advent of extremely
advanced, ingenious technology. In the early days of the industry, the only way
of locating underground petroleum and natural gas deposits was to search for
surface evidence of these underground formations. Those searching for petroleum
deposits were forced to scour the earth, looking for seepages of oil or gas
emitted from underground before they had any clue that there were deposits underneath.
However, because such a low proportion of petroleum and natural gas deposits
actually seep to the surface, this made for a very inefficient and difficult
exploration process. As the demand for fossil fuel energy has increased
dramatically over the past years, so has the necessity for more accurate
methods of locating these deposits.
Technology has allowed for a remarkable increase in the
success rate of locating petroleum reservoirs. In this section, it will be
outlined how geologists and geophysicists use technology and knowledge of the
properties of underground oil and natural gas deposits to gather data that can
later be interpreted and used to make educated guesses as to where natural gas
deposits exist. However, it must be remembered that the process of exploring
for natural gas and petroleum deposits is characteristically an uncertain one,
due to the complexity of searching for something that is often thousands of
feet below ground.
·
Geological
Surveys
Exploration for oil and natural gas typically begins with
geologists examining the surface structure of the earth, and determining areas
where it is geologically likely that petroleum or gas deposits might exist. It
was discovered in the mid 1800’s that ‘anticlinal slopes’ had a particularly increased
chance of containing petroleum or gas deposits. These anticlinal slopes are
areas where the earth has folded up on itself, forming the dome shape that is
characteristic of a great number of reservoirs. By surveying and mapping the
surface and sub-surface characteristics of a certain area, the geologist can
extrapolate which areas are most likely to contain a petroleum or natural gas
reservoir. The geologist has many tools at his disposal to do so, from the
outcroppings of rocks on the surface or in valleys and gorges, to the geologic
information attained from the rock cuttings and samples obtained from the
digging of irrigation ditches, water wells, and other oil and gas wells. This
information is all combined to allow the geologist to make inferences as to the
fluid content, porosity, permeability, age, and formation sequence of the rocks
underneath the surface of a particular area. For example, in the picture shown,
a geologist may study the outcroppings of rock to gain insight into the geology
of the subsurface areas.
·
Surface
Geology
Source: Anadarko Petroleum Corporation
Once the geologist has determined an area where it is
geologically possible for a natural gas or petroleum formation to exist,
further tests can be performed to gain more detailed data about the potential
reservoir area. These tests allow for the more accurate mapping of underground
formations, most notably those formations that are commonly associated with
natural gas and petroleum reservoirs. These tests are commonly performed by a
geophysicist, one who uses technology to find and map underground rock
formations.
·
A
Seismograph
Source: U.S. Geological Survey
Seismic Exploration
Arguably the biggest breakthrough in petroleum and oil and
natural gas exploration came through the use of basic seismology. Seismology
refers to the study of how energy, in the form of seismic waves, moves through
the Earth's crust and interacts differently with various types of underground
formations. In 1855, L. Palmiere developed the first 'seismograph', an
instrument used to detect and record earthquakes. This device was able to pick
up and record the vibrations of the earth that occur during an earthquake.
However, it wasn't until 1921 that this technology was applied to the petroleum
industry and used to help locate underground fossil fuel formations.
The basic concept of seismology is quite simple. As the
Earth's crust is composed of different layers, each with its own properties,
energy (in the form of seismic waves) traveling underground interacts
differently with each of these layers. These seismic waves, emitted from a
source, will travel through the earth, but also be reflected back toward the source
by the different underground layers. Through seismology, geophysicists are able
to artificially create vibrations on the surface and record how these
vibrations are reflected back to the surface, revealing the properties of the
geology beneath.
An analogy that makes intuitive sense is that of bouncing a
rubber ball. A rubber ball that is dropped on concrete will bounce in a much
different way than a rubber ball dropped on sand. In the same manner, seismic
waves sent underground will reflect off dense layers of rock much differently
than extremely porous layers of rock, allowing the geologist to infer from
seismic data exactly what layers exist underground and at what depth. While the
actual use of seismology in practice is quite a bit more complicated and
technical, this basic concept still holds.
Seismology in Practice
Source: API
1. Onshore Seismology
In practice, using seismology for exploring onshore areas
involves artificially creating seismic waves, the reflection of which are then
picked up by sensitive pieces of equipment called 'geophones' that are embedded
in the ground. The data picked up by these geophones is then transmitted to a
seismic recording truck, which records the data for further interpretation by
geophysicists and petroleum reservoir engineers. The drawing shows the basic
components of a seismic crew. The source of seismic waves (in this case an
underground explosion) creates that reflect off the different layers of the
Earth, to be picked up by geophones on the surface and relayed to a seismic
recording truck to be interpreted and logged.
Although the seismograph was originally developed to measure
earthquakes, it was discovered that much the same sort of vibrations and
seismic waves could be produced artificially and used to map underground
geologic formations. In the early days of seismic exploration, seismic waves
were created using dynamite. These carefully planned, small explosions created
the requisite seismic waves, which were then picked up by the geophones,
generating data to be interpreted by geophysicists, geologists, and petroleum
engineers.
Recently, due to environmental concerns and improved
technology, it is often no longer necessary to use explosive charges to
generate the needed seismic waves. Instead, most seismic crews use
non-explosive seismic technology to generate the required data. This
non-explosive technology usually consists of a large heavy-wheeled or
tracked-vehicle carrying special equipment designed to create a large impact or
series of vibrations. These impacts or vibrations create seismic waves similar
to those created by dynamite
2. Offshore Seismology
The same sort of process is used in offshore seismic
exploration. When exploring for natural gas that may exist thousands of feet
below the seabed floor, which may itself be thousands of feet below sea level,
a slightly different method of seismic exploration is used. Instead of trucks
and geophones, a ship is used to pick up the seismic data and hydrophones are
used to pick up seismic waves underwater. These hydrophones are towed behind
the ship in various configurations depending on the needs of the geophysicist.
Instead of using dynamite or impacts on the seabed floor, the seismic ship uses
a large air gun, which releases bursts of compressed air under the water,
creating seismic waves that can travel through the Earth's crust and generate
the seismic reflections that are necessary.
·
Offshore
Seismic Exploration
Source: U.S. Geological Survey
1. Magnetometers
In addition to using seismology to gather data concerning
the composition of the Earth's crust, the magnetic properties of underground
formations can be measured to generate geological and geophysical data. This is
accomplished through the use of magnetometers, which are devices that can
measure the small differences in the Earth's magnetic field. In the early days
of magnetometers, the devices were large and bulky, and only able to survey a
small area at a time.
2. Gravimeters
In addition to using variances in the Earth's magnetic
field, geophysicists can also measure and record the difference in the Earth's
gravitational field to gain a better understanding of what is underground.
Different underground formations and rock types all have a slightly different effect
on the gravitational field that surrounds the Earth. By measuring these minute
differences with very sensitive equipment, geophysicists are able to analyze
underground formations and develop clearer insight into the types of formations
that may lie below ground, and whether or not the formations have the potential
for containing hydrocarbons like natural gas.
·
Exploratory
Wells
The best way to gain a full understanding of subsurface
geology and the potential for natural gas deposits to exist in a given area is
to drill an exploratory well. This consists of digging into the Earth's crust
to allow geologists to study the composition of the underground rock layers in
detail. In addition to looking for natural gas and petroleum deposits by
drilling an exploratory well, geologists also examine the drill cuttings and
fluids to gain a better understanding of the geologic features of the area.
Logging, explained below, is another tool used in developed as well as
exploratory wells. Drilling an exploratory well is an expensive, time consuming
effort. Therefore, exploratory wells are only drilled in areas where other data
has indicated a high probability of petroleum formations.
·
Logging
Logging refers to performing tests during or after the
drilling process to allow geologists and drill operators to monitor the
progress of the well drilling and to gain a clearer picture of subsurface
formations. There are many different types of logging, in fact; over 100
different logging tests can be performed, but essentially they consist of a
variety of tests that illuminate the true composition and characteristics of
the different layers of rock that the well passes through. Logging is also
essential during the drilling process. Monitoring logs can ensure that the
correct drilling equipment is used and that drilling is not continued if
unfavorable conditions develop.
Various types of tests include standard, electric, acoustic,
radioactivity, density, induction, caliper, directional and nuclear logging, to
name but a few. Two of the most prolific and often performed tests include
standard logging and electric logging.
Standard logging consists of examining and recording the
physical aspects of a well. For example, the drill cuttings (pieces of rock
displaced by the drilling of the well) are all examined and recorded, allowing
geologists to physically examine the subsurface rock. Also, core samples are
taken by lifting a sample of underground rock intact to the surface, allowing
the various layers of rock and their thickness to be examined. These cuttings
and cores are often examined using powerful microscopes that can magnify the
rock up to 2,000 times. This allows the geologist to examine the porosity and
fluid content of the subsurface rock, and to gain a better understanding of the
earth in which the well is being drilled.
Electric logging consists of lowering a device used to
measure the electric resistance of the rock layers in the 'down hole' portion
of the well. This is done by running an electric current through the rock
formation and measuring the resistance that it encounters along its way. This
gives geologists an idea of the fluid content and characteristics. A newer
version of electric logging, called induction electric logging, provides much
the same types of readings, but is more easily performed and provides data that
is more easily interpreted.
The drilling of an exploratory or developing well is the
first contact that a geologist or petroleum engineer has with the actual
contents of the subsurface geology. Logging, in its many forms, uses this
opportunity to gain a fuller understanding of what actually lies beneath the
surface. In addition to providing information specific to that particular well,
vast archives of historical logs exist for geologists interested in the
geologic features of a given or similar area.
·
Data
Interpretation
There are many sources of data and information for the
geologist and geophysicist to use in the exploration for hydrocarbons. However,
this raw data alone would be useless without careful and methodical
interpretation. Much like putting together a puzzle, the geophysicist uses all
of the sources of data available to create a model, or educated guess, as to
the structure of the layers of rock under the ground. Some techniques, including
seismic exploration, lend themselves well to the construction of a hand- or
computer-generated visual interpretation of an underground formation. Other
sources of data, such as that obtained from core samples or logging, are taken
into account by the geologist when determining the subsurface geological
structures. Despite the amazing evolution of technology and exploration
techniques, the only way of being sure that a petroleum or natural gas
reservoir exists is to drill an exploratory well. Geologists and geophysicists
can make their best guesses as to the location of reservoirs, but these are not
infallible.
·
2-D
Seismic Interpretation
Two-dimensional seismic imaging refers to geophysicists
using the data collected from seismic exploration activities to develop a
cross-sectional picture of the underground rock formations. The geophysicist
interprets the seismic data obtained from the field, taking the vibration
recordings of the seismograph and using them to develop a conceptual model of
the composition and thickness of the various layers of rock underground. This
process is normally used to map underground formations, and to make estimates
based on the geologic structures to determine where it is likely that deposits
may exist.
Another technique using basic seismic data is known as
'direct detection.' In the mid-1970s, it was discovered that white bands,
called 'bright spots', often appeared on seismic recording strips. These white
bands could indicate deposits of hydrocarbons. The nature of porous rock that
contains natural gas could often result in reflecting stronger seismic
reflections than normal, water-filled rock. Therefore, in these circumstances,
the actual natural gas reservoir could be detected directly from the seismic
data. However, this does not hold universally. Many of these 'bright spots' do
not contain hydrocarbons, and many deposits of hydrocarbons are not indicated
by white strips on the seismic data. Therefore, although adding a new technique
of locating petroleum and natural gas reservoirs, direct detection is not a
completely reliable method.
· Computer
Assisted Exploration
One of the greatest innovations in the history of petroleum
exploration is the use of computers to compile and assemble geologic data into
a coherent 'map' of the underground. Use of this computer technology is
referred to as 'CAEX', which is short for 'computer assisted exploration'.
·
Geologist
Using Interactive 3-D Seismic
Source: BP
With the development of the microprocessor, it has become
relatively easy to use computers to assemble seismic data that is collected
from the field. This allows for the processing of very large amounts of data,
increasing the reliability and informational content of the seismic model.
There are three main types of computer-assisted exploration models:
two-dimensional (2-D), three-dimensional (3-D), and most recently,
four-dimensional (4-D). These imaging techniques, while relying mainly on
seismic data acquired in the field, are becoming more and more sophisticated.
Computer technology has advanced so far that it is now possible to incorporate
the data obtained from different types of tests, such as logging, production
information, and gravimetric testing, which can all be combined to create a
'visualization' of the underground formation. Thus geologists and geophysicists
are able to combine all of their sources of data to compile one clear, complete
image of subsurface geology. An example of this is shown where a geologist uses
an interactive computer generated visualization of 3-D seismic data to explore
the subsurface layers.
·
3-D
Seismic Imaging
One of the biggest breakthroughs in computer-aided
exploration was the development of three-dimensional (3-D) seismic imaging.
Three-D imaging utilizes seismic field data to generate a three dimensional
'picture' of underground formations and geologic features. This, in essence,
allows the geophysicist and geologist to see a clear picture of the composition
of the Earth's crust in a particular area. This is tremendously useful in
allowing for the exploration of petroleum and natural gas, as an actual image
could be used to estimate the probability of formations existing in a
particular area, and the characteristics of that potential formation. This
technology has been extremely successful in raising the success rate of
exploration efforts. In fact, using 3-D seismic has been estimated to increase
the likelihood of successful reservoir location by 50 percent.
Although this technology is very useful, it is also very
costly. Three-D seismic imaging can cost hundreds of thousands of dollars per
square mile. The generation of 3-D images requires data to be collected from
several thousand locations, as opposed to 2-D imaging, which only requires
several hundred data points. As such, 3-D imaging is a much more involved and
prolonged process. Therefore, it is usually used in conjunction with other
exploration techniques. For example, a geophysicist may use traditional 2-D
modeling and examination of geologic features to determine if there is a
probability of the presence of natural gas. Once these basic techniques are
used, 3-D seismic imaging may be used only in those areas that have a high
probability of containing reservoirs.
In addition to broadly locating petroleum reservoirs, 3-D
seismic imaging allows for the more accurate placement of wells to be drilled.
This increases the productivity of successful wells, allowing for more
petroleum and natural gas to be extracted from the ground. In fact, 3-D seismic
can increase the recovery rates of productive wells to 40-50 percent, as
opposed to 25-30 percent with traditional 2-D exploration techniques.
In addition to broadly locating petroleum reservoirs, 3-D
seismic imaging allows for the more accurate placement of wells to be drilled.
This increases the productivity of successful wells, allowing for more
petroleum and natural gas to be extracted from the ground. In fact, 3-D seismic
can increase the recovery rates of productive wells to 40 to 50 percent or
greater, as opposed to 25 to 30 percent with traditional 2-D exploration
techniques.
Three-D seismic imaging has become an extremely important
tool in the search natural gas. By 1980, only 100 3-D seismic imaging tests had
been performed. However, by the mid 1990s, 200 to 300 3-D seismic surveys were
being performed each year. In 1996, in the Gulf of Mexico, one of the largest
natural gas-producing areas in the U.S., nearly 80 percent of wells drilled in
the Gulf were based on 3-D seismic data. In 1993, 75 percent of all onshore
exploratory surveys conducted used 3-D seismic imaging.
·
2-D
Seismic Imaging
Two-dimensional (2-D) computer-assisted exploration includes
generating an image of subsurface geology much in the same manner as in normal
2-D data interpretation. However, with the aid of computer technology, it is
possible to generate more detailed maps more quickly than by the traditional
method. In addition, with 2-D CAEX it is possible to use color graphic displays
generated by a computer to highlight geologic features that may not be apparent
using traditional 2-D seismic imaging methods.
While 2-D seismic imaging is less complicated and less
detailed than 3-D imaging, it must be noted that 3-D imaging techniques were
developed prior to 2-D techniques. Thus, although it does not appear to be the
logical progression of techniques, the simpler 2-D imaging techniques were
actually an extension of 3-D techniques, not the other way around. Because it
is simpler, 2-D imaging is much cheaper, and more easily and quickly performed,
than 3-D imaging. Because of this, 2-D CAEX imaging may be used in areas that
are somewhat likely to contain natural gas deposits, but not likely enough to
justify the full cost and time commitment required by 3-D imaging.
·
4-D
Seismic Imaging
One of the latest breakthroughs in seismic exploration and
the modeling of underground rock formations has been the introduction of
four-dimensional (4-D) seismic imaging. This type of imaging is an extension of
3-D imaging technology. However, instead of achieving a simple, static image of
the underground, in 4-D imaging the changes in structures and properties of
underground formations are observed over time. Since the fourth dimension in
4-D imaging is time, it is also referred to as 4-D 'time lapse' imaging.
Various seismic readings of a particular area are taken at
different times, and this sequence of data is fed into a powerful computer. The
different images are amalgamated to create a 'movie' of what is going on under
the ground. By studying how seismic images change over time, geologists can
gain a better understanding of many properties of the rock, including
underground fluid flow, viscosity, temperature and saturation. Although very
important in the exploration process, 4-D seismic images can also be used by
petroleum geologists to evaluate the properties of a reservoir, including how
it is expected to deplete once petroleum extraction has begun. Using 4-D
imaging on a reservoir can increase recovery rates above what can be achieved
using 2-D or 3-D imaging. Where the recovery rates using these two types of
images are 25 to 30 percent and 40 to 50 percent respectively, the use of 4-D
imaging can result in recovery rates of 65 to 70 percent.